2.7. Verhalten im Unendlichen

Möchte man den Grenzwert einer gebrochenrationalen Funktion bestimmen, so bestimmt man den Grenzwert des Zählers und den des Nenners. Ist das Ergebnis 0 : 0 oder \infty  : \infty , so wendet man die Regel von L’Hospital an. Diese Regel besagt, dass in diesen Fällen der Grenzwert berechnet werden kann, indem man den Zähler und den Nenner jeweils für sich ableitet und dann die jeweiligen Grenzwerte berechnet. Das man macht man so lange bis das Ergebnis nicht mehr 0 : 0 oder \infty : \infty lautet. Der Grenzwert der Funktion ist dann dieser “letzte” Grenzwert.
Beispiel:
f(x) = \frac{x² + 4x}{x³ - 4x + 2}  


\lim_{x \to \infty} \frac{x² + 4x}{x³ - 4x + 2} = \lim_{x \to \infty} \frac{2x + 4}{3x² - 4} = \lim_{x \to \infty} \frac{2}{6x - 4} = 0


\lim_{x \to -\infty} \frac{x² + 4x}{x³ - 4x + 2} = \lim_{x \to -\infty} \frac{2x + 4}{3x² - 4} = \lim_{x \to -\infty} \frac{2}{6x - 4} = 0