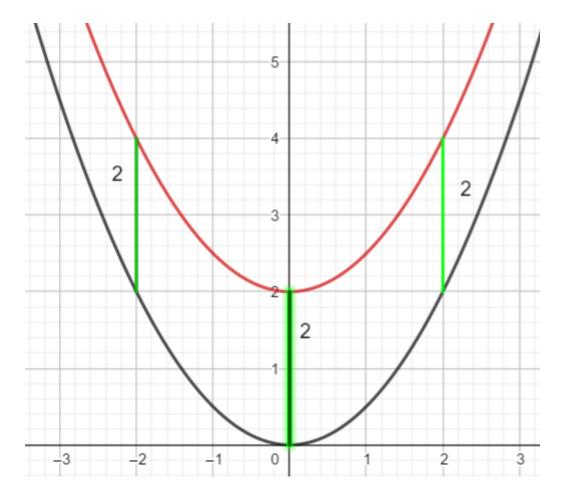
Schauen wir uns nun an welche Auswirkungen eine Veränderung des Parameters c $(f(x) = ax^2 + c)$ am Beispiel der Funktion $f(x) = 0.5x^2 + 2$ hat.

Х	-3	-2	– 1	0	1	2	3
$y = 0.5x^2$	4,5	2	0,5	0	0,5	2	4,5
$y = 0.5x^2 + 2$	6,5	4	2,5	2	2,5	4	6,5

Man sieht, dass der Graph der Parabel der Funktion $f(x) = 0.5x^2$ in jedem einzelnen Punkt um 2 Einheiten nach oben verschoben ist.



In der Wertetabelle kann man ebenfalls sehen, dass sich jeweils die Funktionswerte von $f(x) = 0.5x^2$ und $f(x) = 0.5x^2 + 2$ um 2 unterscheiden. Das heißt, dass man zu allen Funktionswerten von $f(x) = 0.5x^2$ die Zahl 2 addiert und somit die Funktionswerte von $f(x) = 0.5x^2 + 2$ erhält.

Х	-3	-2	-1	0	1	2	3
$y = 0.5x^2$	4,5	2	0,5	0	0,5	2	4,5
$y = 0.5x^2 + 2$	4,5 + 2	2 + 2	0,5 + 2	0 + 2	0,5 + 2	2 + 2	4,5 + 2

Allgemein gilt, dass sich die Funktionswerte von $f(x) = ax^2$ und $f(x) = ax^2 + c$ um den Wert von c unterscheiden.

Ist c positiv, dann ist die Parabel von $f(x) = ax^2$ um den Wert c nach **oben verschoben**. Ist c negativ, dann ist die Parabel von $f(x) = ax^2$ um den Wert c nach **unten verschoben**.

Schauen wir uns hierzu die Funktionen

$$f(x) = 0.3x^2$$

$$g(x) = 0.3x^2 + 3$$

$$h(x) = 0.3x^2 - 3$$

in einem Koordinatensystem an.

