Grundwissen am Ende der 9. Jahrgangsstufe

Wahlpflichtfächergruppe I

- > Systeme linearer Gleichungen mit zwei Variablen lösen
- Quadratische Gleichungen: Lösungsformel, Bedeutung der Diskriminante, Koordinaten der Schnittpunkte von Funktionsgraphen, Tangentialprobleme
- ➤ In der Menge R der reellen Zahlen rechnen
- Definition der Quadratwurzel kennen und anwenden
- ➤ Einfache Termumformungen mit Quadratwurzeln
- Graphen und Eigenschaften von quadratischen Funktionen, Scheitelform
- > Gleichungen von Parabeln ermitteln, Parameterverfahren
- > Flächeninhalte ebener Figuren insbesondere auch mithilfe zweireihiger Determinanten
- Umfang und Flächeninhalt von Kreisen, Mantel- bzw. Oberfläche und Volumen von Prismen, Pyramiden, geraden Kreiszylindern und Kreiskegeln sowie von Kugeln
- Abbildung durch zentrische Streckung anwenden
- > Streckenlängen mit dem Vierstreckensatz bestimmen
- Berechnungen mithilfe von Vektoren
- Ähnlichkeit von Dreiecken
- Mithilfe der Flächensätze am rechtwinkligen Dreieck Streckenlängen berechnen

M 9.1 Systeme linearer Gleichungen mit zwei Variablen

Einen Ausdruck der Form

$$a_1 x + b_1 y = c_1$$

 $A_2 x + b_2 y = c_2$

nennt man lineares Gleichungssystem.

Zur Bestimmung der Lösungsmenge bieten sich folgende Verfahren an:

1. Gleichsetzungsverfahren

$$2x + y = 4 - 3x + y + 1 = 0$$

$$y = -2x + 4$$

 $y = 3x - 1$

Gleichsetzen der Rechtsterme:

$$-2x + 4 = 3x - 1$$

$$\Leftrightarrow x = 1$$

Einsetzen in Gleichung I:

$$y = -2 \cdot 1 + 4 = 2$$

$$\Rightarrow$$
 IL = $\{(1 \mid 2)\}$

2. Einsetzungsverfahren

$$2x - 4y + 10 = 0$$

$$5x - 3y + 11 = 0$$

$$x = 2y - 5$$

 $5x - 3y + 11 = 0$

Einsetzen der I. in die II. Gleichung:

$$5 \cdot (2y - 5) - 3y + 11 = 0$$

$$\Leftrightarrow 10y - 25 - 3y + 11 = 0$$

$$\Leftrightarrow 7y = 14$$

$$\Leftrightarrow y = 2$$

Einsetzen in Gleichung I:

$$x = 2 \cdot 2 - 5 = -1$$

$$\Rightarrow$$
 IL = { (-1 | 2)}

3. Additionsverfahren

$$2x - 3y = 7 | .5$$

 $4x + 5y = -8 | .3$

$$10x - 15y = 35$$
 (I)
 $12x + 15y = -24$ (II)

Addieren der Gleichungen (I) und (II):

$$10x - 15y + 12x + 15y = 35 + (-24)$$
⇔
$$22x = 11$$
⇔
$$x = 0.5$$

Einsetzen in Gleichung I:

$$(...)$$
 y = -2

$$\Rightarrow$$
 IL = { $(0.5 \mid -2)$ }

4. Determinantenverfahren

$$5x - 6y = -9$$

$$-2x + 3y = 15$$

$$D = \begin{vmatrix} 5 & -6 \\ -2 & 3 \end{vmatrix} = 15 - 12 = 3$$
 (Koeffizienten-Determinante)

$$D_x = \begin{vmatrix} -9 & -6 \\ 15 & 3 \end{vmatrix} = -27 + 90 = 63$$
 (x-Spalte wurde mit Konstanten ersetzt)

$$D_y = \begin{vmatrix} 5 & -9 \\ -2 & 15 \end{vmatrix} = 75 - 18 = 57$$
 (y-Spalte wurde mit Konstanten ersetzt)

$$x = \frac{D_x}{D} = \frac{63}{3} = 21$$

$$y = \frac{D_y}{D} = \frac{57}{3} = 19$$

$$\Rightarrow$$
 IL = { (21 | 19) }

Aufgaben:

Bestimme die Lösungsmenge folgender linearer Gleichungssysteme und deute das Ergebnis geometrisch.

a)
$$2x - 5y = -9$$

 $7y + 3x - 1 = 0$

c)
$$4x + 1.6 = 0.8y$$

 $4y + 3x + 3.5 = 0$

c)
$$5y - 7.5 = -2x$$

 $\frac{1}{2}y = -\frac{1}{5}x + \frac{3}{4}$

d)
$$\frac{1}{3}x + y = 6$$

 $4 + 3y = -x - 12$

M 9.2 Erweiterung des Zahlenbereichs: Die Menge IR der reellen Zahlen

Irrationale Zahlen

Irrationale Zahlen sind Zahlen, die sich nicht in Bruchform darstellen lassen (unendlich lange, nicht periodische Dezimalbrüche).

Reelle Zahlen

Die Menge IR der **reellen Zahlen** besteht aus den rationalen und den irrationalen Zahlen.

In IR gelten die bekannten Rechengesetze.

Wurzeln, Rechenregeln für Wurzeln

 \sqrt{a} heißt "Quadratwurzel aus a" (kurz: "Wurzel aus a"). Dabei ist a der Radikand. Die Wurzel ist durch $\sqrt{a} \cdot \sqrt{a} =$ a für a > 0 definiert.

Für a, $b \in IR_0^+$ gilt:

$$\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$$
 (Produktregel)

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$
 mit b $\neq 0$ (Quotientenregel)

$$\sqrt{a^2 \cdot b} = a \cdot \sqrt{b}$$
 (teilweises Radizieren)

$$\frac{a}{\sqrt{b}} = \frac{a}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}} = \frac{a}{b} \cdot \sqrt{b} \quad (b \neq 0)$$

$$\frac{a}{\sqrt{b} + c} = \frac{a}{\sqrt{b} + c} \cdot \frac{\sqrt{b} - c}{\sqrt{b} - c} = \frac{a \cdot \sqrt{b} - a \cdot c}{b - c^2}$$

(Nenner rational machen)

Aufgaben:

(Hinweis: Alle vorkommenden Variablen stehen für positive rationale Zahlen)

- a) Vereinfache soweit wie möglich: $\sqrt{\frac{3a^2}{4}}$; $\sqrt{\frac{8b^5}{9a^2}}$; $\sqrt{18b^2}$
- b) Multipliziere aus und vereinfache: $(3b\sqrt{b} 5\sqrt{c} + 2\sqrt{b^3}) \cdot 2\sqrt{b}$; $(\sqrt{3a} + 7\sqrt{a}) : \sqrt{a}$
- c) Mache den Nenner rational und vereinfache:

$$\frac{6}{\sqrt{3}}$$
; $\frac{y^2}{\sqrt{y^3}}$; $\frac{3}{1+\sqrt{2}}$; $\frac{24\sqrt{3}}{\sqrt{15}-\sqrt{3}}$; $\frac{a}{\sqrt{3a}-\sqrt{2a}}$

M 9.3 Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen haben Gleichungen der Form

 $y = ax^2 + bx + c$; a, b, $c \in IR$, $a \ne 0$ mit $\mathbb{G} = IR \times IR$ und ID = IRDie Graphen sind Parabeln, deren Form und Öffnung von a abhängt

a > 0 Öffnung nach oben a < 0 Öffnung nach unten

|a| < 1 gestauchte Parabel

|a| = 1 Normalparabel

|a| > 1 gestreckte Parabel

Jede Parabel besitzt eine Symmetrieachse, diese schneidet die

Kurve im Scheitelpunkt S mit S $\left(-\frac{b}{2a} \middle| c - \frac{b^2}{4a}\right)$

Die Gleichung y = $(x - x_S)^2 + y_S$ ist die Scheitelform der Parabel mit dem Scheitelpunkt $S(x_S \mid y_S)$

Beispiel: Die Funktion f mit $y = 2x^2 - 6x + 1$ ist gegeben. Der Graph ist eine gestreckte nach oben

geöffnete Parabel mit dem Scheitel S $\left(-\frac{-6}{2 \cdot 2} \middle| 1 - \frac{(-6)^2}{4 \cdot 2}\right) = S(1,5|-3,5)$

ID = IR; $\mathbb{W} = \{y | y \ge -3.5\}_{IR}$; Scheitelform: $y = 2 (x - 1.5)^2 - 3.5$

Wurzelfunktion: Die Wurzelfunktion ist die Umkehrung der quadratischen Funktion.

Sie besitzt eine Gleichung der Form $y = \sqrt{a(x+b)} + c$

a, b, c \in IR; a(x + b) \geq 0

Beispiel: f mit $y = -\frac{1}{2}x^2 - 6x + 1$; $S(2|5) \Rightarrow f$: $y = -\frac{1}{2}(x-2)^2 + 5$

 $f^{-1}: x = -\frac{1}{2}(y-2)^2 + 5 \iff f^{-1}: -2(x-5) = (y-2)^2 \iff f^{-1}: y = \sqrt{-2(x-5)} + 2$

Parabelscharen: Eine

Eine Parabelschar besteht aus Parabeln mit gemeinsamen Eigenschaften. Sie werden durch eine Funktionsgleichung beschrieben, die einen Parameter enthält. Die Scheitelpunkte der Scharparabeln liegen auf einem Trägergraphen.

Beispiel: p(a): $y = x^2 - ax + a + 1$; $S\left(\frac{a}{2} \mid a + 1 - \frac{a^2}{4}\right)$

Trägergraph p_T der Scheitelpunkte: $x = \frac{a}{2}$ $\wedge y = -\frac{a^2}{4} + a + 1$

 $a = 2x \wedge y = -\frac{(2x)^2}{4} + (2x) + 1 \Rightarrow p_T: y = -x^2 + 2x + 1$

<u>Aufgabe</u>: a) Berechne die Scheitelkoordinaten der Parabel p: $y = -2x^2 - 4x + 1$ und zeichne p.

- b) Die Parabel p: $y = x^2 + 3x$ wird mit $\begin{pmatrix} 6 \\ -2 \end{pmatrix}$ verschoben. Ermittle die Gleichung von p'.
- c) Gegeben ist die Funktion f mit $y = 0.5x^2 + x 4$. Gib die Gleichung der Umkehrfunktion f^{-1} , sowie Definitions- und Wertemenge von f^{-1} an.
- d) Die Parabelschar p(b) mit y = $-x^2 + 2bx b^2 + b$ ist gegeben. Zeichne die Scharparabeln. für b \in { -1; 0; 3} und gib die Gleichung des Trägergraphen der Scheitelpunkte von den Scharparabeln an.

M 9.4 Quadratische Gleichungen und Ungleichungen

Quadratische Gleichung

Eine Gleichung, bei der die Variable im Quadrat vorkommt, heißt quadratische Gleichung.

Eine quadratische Gleichung der Form $ax^2 + bx + c = 0$ mit $a \ne 0$ kann mit der Lösungsformel gelöst werden.

Es gilt: IL =
$$\left\{ \frac{-b + \sqrt{b^2 - 4ac}}{2a}; \frac{-b - \sqrt{b^2 - 4ac}}{2a} \right\}$$

Mithilfe des Terms b^2 -4ac kann man erkennen, ob die quadratische Gleichung eine, zwei oder keine reelle Lösung hat.

Dieser Term heißt Diskriminante D.

D =
$$b^2$$
 - 4ac D > 0 \Rightarrow zwei reelle Lösungen D = 0 \Rightarrow eine reelle Lösung D < 0 \Rightarrow keine reelle Lösung

Quadratische Ungleichung

Eine Ungleichung der Form $ax^2 + bx + c < 0$ oder $ax^2 + bx + c > 0$ mit a $\neq 0$ heißt quadratische Ungleichung.

Besteht die Lösungsmenge einer quadratischen Ungleichung aus einem oder zwei Intervallen, so erhält man die **Intervallgrenzen** als Lösungsmenge der zugehörigen quadratischen Gleichung.

Wurzelgleichungen

Gleichungen, bei denen die Variable unter einer Wurzel steht, heißen Wurzelgleichungen.

Werden Wurzelgleichungen durch Quadrieren gelöst, ist eine Probebelegung unbedingt erforderlich!

Aufgaben:

- 1. Bestimme die Lösungsmenge. $\mathbb{G} = IR$.
 - a) $x^2 + 8x + 12 = 0$
- b) $2x^2 8x + 24 = 0$
- c) $-1.5x^2 + 3x + 12 = 0$
- 2. Bestimme $a \in \mathbb{R}$ so, dass die Gleichung genau eine Lösung besitzt. $\mathbb{G} = \mathbb{R}$ $x^2 + ax + 2a - 4 = 0$
- 3. Zeige dass die Gerade g: y = -x + 0.75 eine Tangente an die Parabel p: $y = x^2 6x + 7$ ist.
- 4. Die Diagonalenlängen einer Raute unterscheiden sich um 2,5 cm. Berechne die Längen der Diagonalen, wenn der Flächeninhalt 15,75 cm² beträgt.

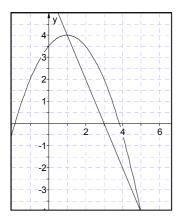
M 9.5 Systeme mit quadratischen Gleichungen

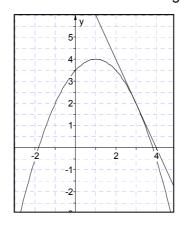
Gleichungssysteme mit quadratischen Gleichungen enthalten mindestens eine Gleichung, deren Variable im Quadrat steht.

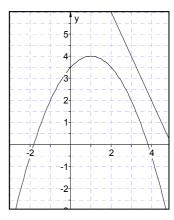
Zur rechnerischen Lösung werden das Gleichsetzungs-, Einsetzungs- oder Additionsverfahren genutzt. Dabei ergibt sich gewöhnlich eine quadratische Gleichung. Deren Diskriminante entscheidet über die Anzahl der Lösungselemente.

Parabel und Gerade

Beim Schnitt einer Parabel mit einer Geraden treten die folgenden Fälle auf:







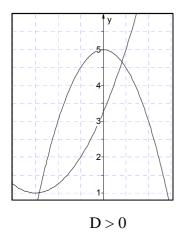
D > 0; Sekante

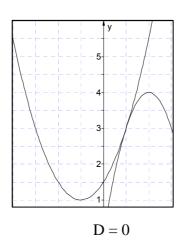
D = 0; Tangente

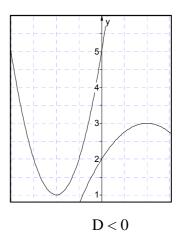
D < 0; Passante

Geraden parallel zur y-Achse des Koordinatensystems haben stets nur einen Schnittpunkt mit der Parabel gemeinsam.

Parabel und Parabel



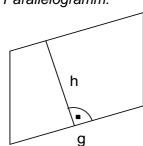




Aufgaben:

- Ermittle die Schnittpunktskoordinaten von
 - a) $p_1 : y = (x-2)^2 + 1$ und $g_1 : y = x 1$
 - b) p_2 : $y = -x^2 + 2x 1$ und p_3 : $y = x^2 + 6x + 2$ c) p_4 : $y = -x^2 + 4x$ und g_2 : y = 2x + 1
- 2. Für welchen Wert des Parameters a liegt eine Tangente vor?
 - $p: y = x^2 + 2x + 3$ und g(a): y = -x + a
- 3. Für welchen Wert des Parameters a berührt die Gerade g die zugehörige Scharparabel? g: y = -2x + 1 und $p(a): y = (x - a)^2 - 2a$

M 9.6 Flächeninhalt ebener Vielecke



Der Flächeninhalt eines Parallelogramms ist gleich dem Produkt aus einer Seitenlänge und der zugehörigen Höhe.

$$A_{Parallelogramm} = g \cdot h$$

Im kartesischen Koordinatensystem ist der Flächeninhalt auch der Betrag der **Determinante**, die durch die aufspannenden Vektoren a und b gebildet wird.

$$A_{Parallelog\,ramm} = \begin{vmatrix} a_x & b_x \\ a_y & b_y \end{vmatrix}$$

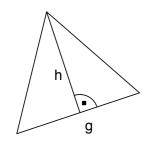
Beispiel:

Das Parallelogramm ABCD hat die Koordinaten A(-1|1), B(7|-2), D(-3|5). Berechne die Vektoren (diese müssen vom gleichen Punkt ausgehen):

$$\overrightarrow{AB} = \begin{pmatrix} 7 - (-1) \\ -2 - 1 \end{pmatrix} = \begin{pmatrix} 8 \\ -3 \end{pmatrix}, \quad \overrightarrow{AD} = \begin{pmatrix} -3 - (-1) \\ 5 - 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

$$A_{ABCD} = \begin{vmatrix} 8 & -2 \\ -3 & 4 \end{vmatrix} FE = (8 \cdot 4 - (-3) \cdot (-2))FE = 26 FE$$

Dreieck:



Der Flächeninhalt eines Dreiecks ist gleich dem halben Produkt aus einer Seitenlänge und der zugehörigen Höhe.

$$A_{Dreieck} = \frac{1}{2} \cdot g \cdot h$$

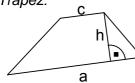
Im kartesischen Koordinatensystem ist der Flächeninhalt auch dem halben Betrag der Determinante, die durch die aufspannenden Vektoren a und b gebildet wird.

$$A_{Dreieck} = \frac{1}{2} \cdot \begin{vmatrix} a_x & b_x \\ a_y & b_y \end{vmatrix}$$

Beispiel:

Im Dreieck ABC beträgt die Länge der Seite a = 8 cm und der Flächeninhalt A = 36cm². Berechne die Länge der zugehörigen Höhe ha.

$$A = \frac{1}{2} a \cdot h_a$$
; $36cm^2 = \frac{1}{2} \cdot 8cm \cdot h_a \Leftrightarrow h_a = \frac{36cm^2 \cdot 2}{8cm} = 9cm$



Der Flächeninhalt eines Trapezes ist gleich dem halben Produkt aus der Summe der parallelen Grundlinien und der Höhe.

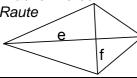
$$A_{Trapez} = \frac{1}{2} \cdot (a + c) \cdot h$$

Beispiel:

Die Grundlinien im Trapez ABCD sind 7cm und 4cm lang. Berechne den Flächeninhalt bei einer Höhe von 8,5cm.

$$A = \frac{1}{2} \cdot (7cm + 4cm) \cdot 8,5cm = 46,75cm^2$$

Drachenviereck: Raute



Der Flächeninhalt eines Drachenvierecks oder einer Raute ist gleich dem halben Produkt aus den Längen ihrer Diagonalen.

$$A = \frac{1}{2} \cdot e \cdot f$$

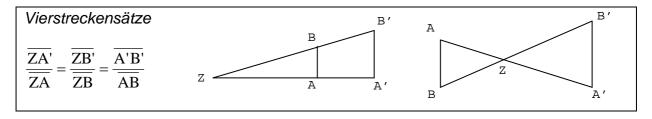
Aufgabe:

- a) Berechne den Flächeninhalt des Parallelogramms ABCD mit g = 7 cm, h = 5 cm.
- b) Berechne den Flächeninhalt des Parallelogramms ABCD mit A(-1|2), B(6|0), C(5|7). Berechne die Koordinate des Punktes D.
- c) Berechne den Flächeninhalt des Dreiecks ABC mit A(-1|2), B(6|0), C(5|7).
- d) In einem Drachenviereck mit A = 54cm² ist eine Diagonale dreimal so lang wie die andere. Berechne die Längen der beiden Diagonalen.

M 9.7 Abbildung durch zentrische Streckung

$\begin{tabular}{lll} Abbildungsvorschrift & Bei einer zentrischen Streckung mit Streckungszentrum Z \\ & und Streckungsfaktor & $k \neq 0$ wird jedem Punkt P ein Bildpunkt \\ & P' so zugeordnet, dass gilt: P' \in ZP und $\overline{ZP'}$ = $|k| \cdot \overline{ZP}$ \\ \end{tabular}$

Abbildungseigenschaften	Das Streckungszentrum ist der einzige Fixpunkt.
	Die zentrische Streckung ist geraden- und winkeltreu.
	Die zentrische Streckung ist verhältnis- und kreistreu.
	Ur- und Bildgerade verlaufen parallel.



Abbildungsgleichung
$$P(x \mid y) \xrightarrow{Z(x_Z \mid y_Z); k} P'(x' \mid y') \quad \begin{pmatrix} x' - x_Z \\ \vdots \end{pmatrix} = k \cdot \begin{pmatrix} x - x_Z \\ \vdots \end{pmatrix}$$

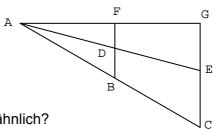
Äten Patet alte alte alle	Desirable alord Whellah accounts	
Ähnlichkeitssätze	Dreiecke sind ähnlich, wenn sie	
	 im Verhältnis der Längen der drei Seiten übereinstimmen. 	(sss)
	 im Verhältnis der Längen von zwei Seiten und dem 	
	eingeschlossenen Winkel übereinstimmen.	(sws)
	 im Verhältnis der Längen von zwei Seiten und dem Gegenwi 	inkel
	der größeren Seite übereinstimmen.	(ssw_g)
	- in zwei Winkeln übereinstimmen.	(ww)

Aufgaben: 1a) $\triangle ABC \xrightarrow{Z;k} \triangle A'B'C'$ mit A(-3|-1), B(2|-2), C(0|6), B'(5|4), C'(x'|0) Zeichne die beiden Dreiecke, berechne k und die Koordinaten von C', Z, A'.

- b) Beschreibe dem Dreieck ABC von Aufgabe a) ein Quadrat DEFG ein mit [DE] \subset [AB], F \in [BC], G \in [AC].
- c) Berechne die Schwerpunktkoordinaten vom Dreieck ABC aus Aufgabe a).

2	$\overline{AB} = 8$ cm; $\overline{AE} = 15$ cm; $\overline{FG} = 3.5$ cm;
	$\overline{BF} = 9cm$; $\overline{CG} = 13.5cm$; $\overline{BC} = xcm$;
	$\overline{AD} = ycm; \ \overline{AG} = zcm; \ BF \parallel CG$
	Berechne x, y, z.

Multiplikation eines Vektors mit einer Zahl



3 Welche der folgenden Dreiecke sind ähnlich?

$\Delta A_1B_1C_1$	$\Delta A_2 B_2 C_2$	$\Delta A_3 B_3 C_3$	$\Delta A_4 B_4 C_4$	$\Delta A_5 B_5 C_5$	$\Delta A_6 B_6 C_6$
$a_1 = 6 \text{ cm}$	$a_2 = 7 \text{ cm}$	α_3 = 50°	a ₄ = 24 cm		a ₆ = 3,5cm
$b_1 = 8 \text{ cm}$	$b_2 = 4 \text{ cm}$	ß ₃ = 90°	$b_4 = 27 \text{ cm}$	$\gamma_5 = 40^{\circ}$	$c_6 = 2 \text{ cm}$
$c_1 = 9 \text{ cm}$	$\gamma_2 = 70^{\circ}$		$c_4 = 18 \text{ cm}$		ß ₆ = 70°

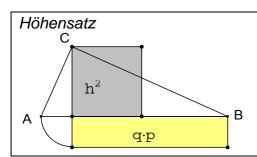
M 9.8 Flächensätze am rechtwinkligen Dreieck

rechtwinkliges Dreieck Hypotenuse: Die Dreiecksseite, die dem rechten Winkel

gegenüberliegt.

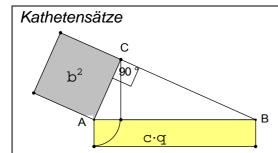
Katheten: Die Dreiecksseiten, die den rechten Winkel bilden. **Hypotenusen**- Die Teilstrecken, in die der Fußpunkt der Höhe

abschnitte die Hypotenuse teilt.



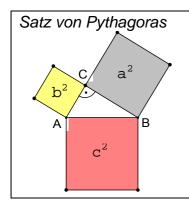
$$h^2 = q \cdot p$$

In einem rechtwinkligen Dreieck ist das Rechteck aus den Hypotenusenabschnitten flächengleich zu dem Quadrat über der Dreieckshöhe.



$$b^2 = c \cdot q$$
$$a^2 = c \cdot p$$

In einem rechtwinkligen Dreieck ist das Quadrat über einer Kathete flächengleich zu dem Rechteck, das aus dem an dieser Kathete anliegenden Hypotenusenabschnitt und der Hypotenuse selbst entsteht.



$$a^2 + b^2 = c^2$$

In einem rechtwinkligen Dreieck ist die Summe der Flächeninhalte der Kathetenquadrate gleich dem Flächeninhalt des Hypotenusenquadrates.

wichtige Formeln Diagonale im Quadrat:

 $d = a \cdot \sqrt{2}$

Höhe im gleichseitigen Dreieck:

 $h = \frac{a}{2}\sqrt{3}$

Betrag eines Vektors \vec{v} :

 $|\overrightarrow{v}| = \sqrt{{v_x}^2 + {v_y}^2}$

Entfernung zweier Punkte:

 $\overline{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$

Aufgaben:

- 1) Das Dreieck ABC ist rechtwinklig bei C mit a = 5cm, b = 7cm (h = 4cm, b = 6cm). Zeichne das Dreieck und berechne c, q, p, h (a, c, q, p)
- 2) Zeichne das Viereck ABCD mit $\overline{AB} = 4 \text{cm}$, $\overline{AD} = 5 \text{cm}$, $\overline{AC} = 9 \text{cm}$, $\alpha = \delta = 90^{\circ}$. Berechne die Längen \overline{CD} und \overline{BD} und den Flächeninhalt des Vierecks.
- 3) Gegeben ist das Dreieck ABC mit A(-1|2), B(4|0), C(6|5). Überprüfe rechnerisch, ob das Dreieck gleichschenklig, gleichseitig, rechtwinklig ist. Berechne den Umfang.
- 4) Gegeben sind die Punkte A(3|–1) und $B_n(x|0.5x+2)$. Berechne $AB_n(x)$, AB_{min} . Für welchen x-Wert wird die Strecke [AB_n] 10 cm lang?

Lösungen

- 91/1 a) IL = $\{((-2|1)\}$; Die beiden Geraden schneiden sich in S(-2|1).
 - IL = $\{(-0.5|-0.5)\}$; Die beiden Geraden schneiden sich in S(-0.5|-0.5).
 - $\{(x|y)| 2x+5y=7,5\}$; Die beiden Geraden sind identisch. c)
 - IL = \emptyset ; Die beiden Geraden sind zueinander parallel. d)

91/2. a)
$$\sqrt{\frac{3a^2}{4}} = \frac{a}{2}\sqrt{3}$$
; $\sqrt{\frac{8b^5}{9a^2}} = \frac{2b^2}{3a}\sqrt{2b}$; $\sqrt{18b^2} = 3b\sqrt{2}$

b)
$$(3b\sqrt{b} - 5\sqrt{c} + 2\sqrt{b^3}) \cdot 2\sqrt{b} = 10b^2 - 10\sqrt{bc}$$
; $(\sqrt{3a} + 7\sqrt{a}) : \sqrt{a} = \sqrt{3} + 7\sqrt{a}$

c)
$$\frac{6}{\sqrt{3}} = 2\sqrt{3}$$
; $\frac{y^2}{\sqrt{y^3}} = \sqrt{y}$; $\frac{3}{1+\sqrt{2}} = 3(1-\sqrt{2})$; $\frac{24\sqrt{3}}{\sqrt{15}-\sqrt{3}} = 2\sqrt{3}(\sqrt{15}+\sqrt{3})$
 $\frac{a}{\sqrt{3a}-\sqrt{2a}} = \sqrt{3a}+\sqrt{2a}$

91/3 a)
$$S(-1|3)$$
 b) p': $y = x^2 - 9x + 16$

c)
$$f^{-1}: y = \sqrt{2x+9} - 1$$
; $D^{-1} = \{x \mid x \ge -4.5\}$; $W^{-1} = \{y \mid y = -1\}$

d)
$$S(b|b)$$
; g_T : $y = x$

91/4 1.a)
$$L = \{ -6; -2 \}$$
 b) $L = \emptyset$ c) $L = \{ -2; 4 \}$

c)
$$L = \{ -2; 4 \}$$

2.
$$a = 4$$

3.
$$x^2 - 6x + 7 = -x + 0.75 \Leftrightarrow x^2 - 5x + 6.25 = 0$$

D = 25 - 4 \cdot 6.25 = 0 \Rightarrow Tangente

Die Diagonalen sind 4,5 cm und 7 cm lang. 4.

91/5 1.a)
$$S_1(3|2)$$
; $S_2(2|1)$

- b) p₂ und p₃ schneiden sich nicht.
- c) p₄ und g₂ berühren sich in B(1|3)

2.
$$a = 0.75$$

3. Es gibt keinen Wert für a, so dass g Tangente wäre.

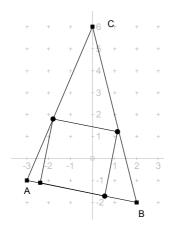
$$9I/6$$
 a) A = 35 cm^2

b)
$$a = 47 \text{ cm}^2$$
; $D(-2|9)$

c)
$$A = 23.5 \text{ cm}^2$$

91/7 1a)
$$k = -0.5$$
; C'(6|0); Z(4|2); A'(7.5|3.5)

b)

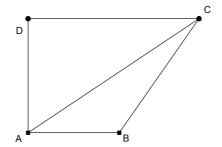


c)
$$S(-\frac{1}{3}|3)$$

2)
$$x = 4$$
; $y = 10$; $z = 10,5$

3)
$$\Delta A_1B_1C_1 \sim \Delta A_4B_4C_4$$
 (sss)
 $\Delta A_3B_3C_3 \sim \Delta A_5B_5C_5$ (ww)
 $\Delta A_2B_2C_2 \sim \Delta A_6B_6C_6$ (sws)

2)
$$\overline{CD} = 8.6$$
cm; $\overline{BD} = 6.40$ cm



3)
$$\overline{AB} = \sqrt{29} \text{cm} = 5,39 \text{cm}$$
; $\overline{BC} = \sqrt{29} \text{cm} = 5,39 \text{cm}$; $\overline{AC} = \sqrt{58} \text{cm} = 7,62 \text{cm}$
Das Dreieck ABC ist gleichschenklig und rechtwinklig.
Umfang u = 18,39cm

4)
$$\overline{AB}(x) = \sqrt{1,25x^2 - 3x + 18}$$
 cm; $\overline{AB}_{min} = 4,02$ cm für $x = 1,2$ $\overline{AB} = 10$ cm für $x = -7$ oder $x = 9,39$