3.2. Nenner rational machen

Hat ein Bruch im Nenner eine Wurzel, dann entfernt man diese Wurzel aus dem Nenner. Man macht den Nenner rational.
Beim Rationalmachen des Nenners wird der Bruch so umgeformt, dass im Nenner keine Wurzel mehr steht. Im einfachsten Fall geschieht das, indem man geignet erweitert.
Beispiel:
\frac{3}{\sqrt{2}} | erweitere mit \sqrt{2}

\frac{3 \sdot \sqrt{2}}{\sqrt{2} \sdot \sqrt{2}} | da \sqrt{2} \sdot \sqrt{2} = 2 fällt die Wurzel im Nenner weg

\frac{3 \sdot \sqrt{2}}{2}

Übung

Rational machen 1

Rational machen 2

Rational machen 3